The Carboxyl Terminus of Brca2 Links the Disassembly of Rad51 Complexes to Mitotic Entry
نویسندگان
چکیده
BACKGROUND The Rad51 recombinase assembles on DNA to execute homologous DNA recombination (HR). This process is essential to repair replication-associated genomic lesions before cells enter mitosis, but how it is started and stopped during the cell cycle remains poorly understood. Rad51 assembly is regulated by the breast cancer suppressor Brca2, via its evolutionarily conserved BRC repeats, and a distinct carboxy (C)-terminal motif whose biological function is uncertain. Using "hit-and-run" gene targeting to insert single-codon substitutions into the avian Brca2 locus, we report here a previously unrecognized role for the C-terminal motif. RESULTS We show that the avian C-terminal motif is functionally cognate with its human counterpart and identify point mutations that either abolish or enhance Rad51 binding. When these mutations are introduced into Brca2, we find that they affect neither the assembly of Rad51 into nuclear foci on damaged DNA nor DNA repair by HR. Instead, foci disassemble more rapidly in a point mutant that fails to bind Rad51, associated with faster mitotic entry. Conversely, the slower disassembly of foci in a point mutant that constitutively binds Rad51 correlates with delayed mitosis. Indeed, Rad51 foci do not persist in mitotic cells even after G2 checkpoint suppression, suggesting that their disassembly is a prerequisite for chromosome segregation. CONCLUSIONS We conclude that Rad51 binding by the C-terminal Brca2 motif is dispensable for the execution of HR but instead links the disassembly of Rad51 complexes to mitotic entry. This mechanism may ensure that HR terminates before chromosome segregation. Our findings assign a biological function for the C-terminal Brca2 motif in a mechanism that coordinates DNA repair with the cell cycle.
منابع مشابه
BRIT1/MCPH1 Is Essential for Mitotic and Meiotic Recombination DNA Repair and Maintaining Genomic Stability in Mice
BRIT1 protein (also known as MCPH1) contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in t...
متن کاملBRCA2 regulates DMC1-mediated recombination through the BRC repeats.
In somatic cells, BRCA2 is needed for RAD51-mediated homologous recombination. The meiosis-specific DNA strand exchange protein, DMC1, promotes the formation of DNA strand invasion products (joint molecules) between homologous molecules in a fashion similar to RAD51. BRCA2 interacts directly with both human RAD51 and DMC1; in the case of RAD51, this interaction results in stimulation of RAD51-p...
متن کاملArchitectural plasticity of human BRCA2–RAD51 complexes in DNA break repair
The tumor suppressor BRCA2 is a large multifunctional protein mutated in 50-60% of familial breast cancers. BRCA2 interacts with many partners and includes multiple regions with potentially disordered structure. In homology directed DNA repair BRCA2 delivers RAD51 to DNA resulting in removal of RPA and assembly of a RAD51 nucleoprotein filament. Dynamic rearrangements of BRCA2 likely drive this...
متن کاملGreen fluorescent protein fused to the C terminus of RAD51 specifically interferes with secondary DNA binding by the RAD51-ssDNA complex.
Green fluorescent protein (GFP), fused to the N or C terminus of a protein of interest, is widely used to monitor the localization and mobility of proteins in cells. RAD51 is an essential protein that functions in mitotic DNA repair and meiotic chromosome segregation by promoting the homologous recombination reaction. A previous genetic study with Arabidopsis thaliana revealed that GFP fused to...
متن کاملEffect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques
Homologous recombination is essential for the preservation of genome stability, thereby preventing cancer. The recombination protein RAD51 drives DNA strand exchange, which requires the assembly, rearrangement and disassembly of a RAD51 filament on DNA, coupled to ATP binding and hydrolysis. This process is facilitated and controlled by recombination mediators and accessory factors. Here, we ha...
متن کامل